Linear operators, the Hurwitz zeta function and Dirichlet L-functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q-Analogues of the Riemann zeta, the Dirichlet L-functions, and a crystal zeta function

A q-analogue ζq(s) of the Riemann zeta function ζ(s) was studied in [Kaneko et al. 03] via a certain q-series of two variables. We introduce in a similar way a q-analogue of the Dirichlet L-functions and make a detailed study of them, including some issues concerning the classical limit of ζq(s) left open in [Kaneko et al. 03]. We also examine a “crystal” limit (i.e. q ↓ 0) behavior of ζq(s). T...

متن کامل

Crandall's computation of the incomplete Gamma function and the Hurwitz zeta function, with applications to Dirichlet L-series

This paper extends tools developed by Richard Crandall in [16] to provide robust, high-precision methods for computation of the incomplete Gamma function and the Lerch transcendent. We then apply these to the corresponding computation of the Hurwitz zeta function and so of Dirichlet L-series and character polylogarithms.

متن کامل

Multiple Dirichlet Series and Moments of Zeta and L–functions

This paper develops an analytic theory of Dirichlet series in several complex variables which possess sufficiently many functional equations. In the first two sections it is shown how straightforward conjectures about the meromorphic continuation and polar divisors of certain such series imply, as a consequence, precise asymptotics (previously conjectured via random matrix theory) for moments o...

متن کامل

New Result of Analytic Functions Related to Hurwitz Zeta Function

By using a linear operator, we obtain some new results for a normalized analytic function f defined by means of the Hadamard product of Hurwitz zeta function. A class related to this function will be introduced and the properties will be discussed.

متن کامل

Some Mean Value Theorems for the Riemann Zeta-function and Dirichlet L-functions

The theory of the Riemann zeta-function ζ(s) and Dirichlet L-functions L(s, χ) abounds with unsolved problems. Chronologically the first of these, now known as the Riemann Hypothesis (RH), originated from Riemann’s remark that it is very probable that all non-trivial zeros of ζ(s) lie on the line < s = 12 . Later on Piltz conjectured the same for all of the functions L(s, χ) (GRH). The vertical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2020

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2020.05.018